The 12th Japan-Korea International Symposium on GIS GIS Day in Kansai 2010, 23rd October, 2010 **New Trends** of **Geographic Information Systems and Geographic Information Science** in the World **Trends in the Ubiquitous Spatio-temporal Society and GIScience&Technology**

Atsuyuki Okabe

When mathematicians say new theories, they mean the theories developed in 20th centuries sometimes, including **19th century**

http://www.newgenevacenter.org/09_Biography/pythagoras.jpg

When geologists say the new period (Cenozoic), it dates back 65,500,000 yeas ago!

Precambrian 4500,000,000

Cenozoic

3

http://27.media.tumblr.com/tumblr_kur7bdr11s1qzevsbo1_250.jpg

The concept of "new" is relative.

New trends in my talk are new trends in the time that humans have existed in the world.

http://yamada.sailog.jp/.shared/image.html?/photos/uncategorized/2008/01/29/homosapiens.jpg

Contents

- 1 Trends in technologies for utilizing temporal information
- 2 Trends in technologies for utilizing spatial information
- 3 Two trends in GIS&T toward the ubiquitous spatio-temporal society
- 4 A research challenge in spatial analysis toward the ubiquitous spatio-temporal information society

Since the time that humans have existed in the world, humans have cognized the real world through the dimensions of time and

Humans gather and record spatio-temporal information comprising What, What time and Where, and, and have thus acquired the "skills in utilizing spatio-temporal information" by using such information to guide their actions.

The humans had been developing the skills in utilizing spatio-temporal information over 10,000 years and built up spatio-temoral technologies.

Technologies for utilizing spatio-temporal information consists of:

Technologies for utilizing temporal information Technologies for utilizing spatial information

1 Trends in technologies for utilizing temporal information

To utilize temporal information

The social reference axis of time

Techniques to know a temporal point on the axis

To utilize temporal information

The SOCial reference axis of time

Techniques to know a temporal point on the axis

Social reference axis of time

Naturally, there are temporal elements that are mutually experienced by everyone in the world since humans have existed.

Rising and setting of the sun

Four seasons

http://www1.plala.or.jp/chiaki/ newpage4.htm

Social reference axis of time

BC45 Julian era 1582 Gregorian Calendar common to the entire world, continuing even to present day time.

It is almost a miracle that almost all people in the world share the same time reference axis!

Utilizing temporal information

The social reference axis of time

Techniques to know the temporal point on the axis

Techniques to know a temporal point

BC2000 solar clock
BC1500 water clock
BC700 sand clock
BC700 candle clock

Techniques to know a temporal point 13th mechanical clock

Groundbreaking technology 17thC

invention of the balance spring

http://en.wikipedia.org/wiki/File:Balance_Wheel_in_Early_Watch_Berthoud.png

Dawn of a new era of mobile time technology

pocket watches

However, this did not spread amongst the general public until the first half of the 20th century

It took more than 200 yeas!

1923 金を金属金な金属金属金属金 A large majority of people had come to own wrist-watches, thus facilitating the emergence of the technology of ubiquitous temporal information

http://www.geocities.co.jp/Milkyway-Kaigan/8686/wwatch_38.html

.... that supported the social infrastructure for people to easily know time whenever and wherever they wanted. This facilitated the efficient utilization of time, and was thus

.... instrumental in the rapid development and progress of

Ubiquitous temporal information revolution

The ubiquitous temporal information technology had established the ubiquitous temporal information society in the 20th century.

2 Trends in technologies for utilizing spatial information

To utilize spatial information

The social reference axis of space

Techniques to know a point on the spatial reference

To utilize spatial information

The social reference axis of space

Techniques to know a point on the spatial reference

Social reference axis of space

Unfortunately, commonly experienced elements such as the rising and setting of the sun and the changing of the four seasons was undiscoverable.

Hipparchus

126BC latitude and longitude

http://www.hps.cam.ac.uk/starry/hipparchus.html

However, in our current 21st century era, instead of utilizing the geographic coordinates of latitude/ longitude in their day to day lives,

..., people make more use of the wide variety of other elements such as address, post codes and telephone numbers.

As yet, we do NOT have any socio-spatial reference axis that all people of the world can commonly and easily use in their daily lives.
To utilize temporal information

The social reference axis of

space

Techniques to know a point on the spatial reference axis

Techniques to know a location

The methods for knowing latitude and longitude were developed separately.

Techniques to know latitude

Eratosthenes 276-195BC

http://en.wikipedia.org/wiki/File:Portrait_of_Eratosthenes.png

Techniques to know latitude

1200AD Quadrant

http://www.aip.org/history/cosmology/tools/images-tools/ quadrant52002m.jpg

1759

1731

Sextant

Octant

http://img.villagephotos.com/p/2004-7/767317/ TROUGHTONSIDVW001.JPG

http://www.antiquesextant.com/images/sext8sm1.jpg⁴⁰

Techniques to know longitude

NO techniques over many centuries!

Many merchant ships were stranded and washed ashore causing the loss of a vast amount of wealth.

http://www.brainsellers.com/cuttysark/ 2006/05/post_238.html

Reward

In 1714 the British parliament announced a reward to anyone who would discover techniques for precisely measuring longitude.

How much the reward?

The reward was so large that it could possibly be equivalent to king's ransom.

John Harrison

Now, GPS

In 1996,

general public use of the GPS was established and it became easily possible to determine latitude and longitude.

However, the technology for determining indoor locations is still in the process of being developed, and

http://www.tokyo-midtown.com/jp/facilities-service/info/service/ub-tour/index.html

..., the smooth coordination of indoor and outdoor location points is still only in its research phase.

Krzysztof W. Kolodziej Johan Hjelm The current reality therefore is that we have **NOT** yet established the technology which would enable us to determine spatial points with ease whenever and wherever we want.

We had established the ubiquitous tempral information society in the 20th century, but we have **NOT** yet established the ubiquitous spatial information society.

Hopes

This is not something to be disappointed about; rather, it is time to have hopes for the future.

Recall

Technologies for ubiquitous temporal information brought a revolutionary change in society in the 20th century.

Ubiquitous spatial information revolution

One can expect that similarly ubiquitous spatial information will facilitate a large social development in the future.

Great reward

Hopefully, Parliaments in the world announce a great reward to anyone who would discover ubiquitous spatial information technologies!

3

Two trends in GIS&T toward the ubiquitous spatio-temporal society

GIScinece&Technology

The science and technology that supports a "ubiquitous spatio-temporal society" can be considered as none other than GIScience&Technology

Trends of its expansion Two-hold: just as a tal mo broad base amounta Photo:K.Yamada

One trend

focuses on how broad the mountain base is, i.e.

it promotes GIS&T that average people can make use of with ease.

It has become possible for people to enjoy spatiotemporal information with much ease using instruments such as the iPhone and GoogleMap.

The other trend

focuses on the height of the mountain, i.e.,

it is the cutting edge GIScience&Technology promoted by experts in the field.

Clip Art

GIScience&Technology

Acquisition Management Analysis Synthesis and Communication of spatio-temporal information.

Almost a daily advancement in Acquisition Management Analysis Synthesis and Communication Information technologie

Much delayed in

Acquisition Management Analysis Synthesis and Communication

Unless the progress in this area deepens further, there can virtually be no possibility of utilizing advanced spatiotemporal information.

One of the research themes in this area is that of real-time spatio-temporal analysis and synthesis

Real-time spatio-temporal analysis and synthesis immediate and on the spot analysis & synthesis of information as it occurs at any given time and place, and setting guidelines for actions through this process.

The successful realization of a ubiquitous spatio-temporal society is highly dependent on such science and

technology.

Real-time spatio-temporal analysis and synthesis

4

A research challenge in spatial analysis toward the ubiquitous spatio-temporal information society

Experiments toward the ubiquitous spatio-temporal society

70

Experiments toward the ubiquitous spatio-temporal society

Experiments toward the ubiquitous spatio-temporal society

Akabane Shopping Street with LED system
The systems have not yet provided comfortable ubiquitous spatio-temporal information.

A reason for it is: the systems are designed assuming the physical (Euclidean) space.

People behave in the subjective space by conceptualizing the physical space in their mind. Users feel the gaps between the physical space and their conceptualized space.

A research challenge

How to model subjective, abstract, and conceptualized spaces mathematically?

Real space

Geometrical objects in the Euclidean space

Network-topological space

Graph-topological space

Abstractions of space

Euclidean space Non-Euclidean space Network-topological space Graph-topological space ResearchesSTOPat here!

Lower 'stream of space'

Graph topological space Network topological space Non-Euclidean space **Euclidean space**

Upper stream or 'origin' of space?

Euclide

Non-Euclide

Network Topology

Graph Topology

What are the minimum axioms of space?

The 'origin' of space

- A topological space (*X*,*F*) is a set *X* of points and a family *F* of subsets of which satisfies the following axioms:
- A1: The union of any number of members of *F* is a member of *F*.
- A2: The intersection of any finite number of *F* is a member of *F*.

The simplest topological space

Indiscrete space F ={Ø, X}

Chaotic space

Spaces represented by general topology

Indiscrete space, $T_0, T_1, T_2, T_3 \dots \dots$ graph, network, non-Euclidean and Euclidean spaces

Upper stream of space

Chaotic space T_0 space T_1 space T_2 space (Hausdorff space) T_3 space (regular space) T_4 space (normal space)

......

Application of general topology to the conceptualization of subjective spaces

An initial attempt by Ai Maeda

1931-1987

都市空間のなかの文学 前田愛 ちくま学芸文庫

http://d.hatena.ne.jp/images/keyword/9973.jpg

An example of indiscrete space

三千院絵ハガキより

The opposite space

六道の辻、西福寺のお堂の横に飾られた**地獄図** http://blog.so-net.ne.jp/_images/blog/_41d/staff_for_one/8818930.jpg

Many attractive research challenges to realize the ubiquitous spatio-temporal society!

Thank you for your kind attention